Metallkomplexe mit biologisch wichtigen Liganden, LXVII^[1]

Synthese von α -Aminosäuren aus Palladium(II)- und Rhodium(III)koordinierten Iminen und Oximen von α -Oxocarboxylaten^{*}

Roland Krämer^a, Herbert Wanjek^b, Kurt Polborn^c und Wolfgang Beck^{*c}

Anorganisch-Chemisches Institut der Universität Münster^{*}, Wilhelm-Klemm-Straße 8, D-48149 Münster

BASF AG^b, D-67056 Ludwigshafen

Institut für Anorganische Chemie der Universität München[°], Meiserstraße 1, D-80333 München

Eingegangen am 24. Juni 1993

Key Words: Palladium complexes / Rhodium complexes / α-Amino acids / 2-Iminocarboxylate as ligand / Chiral glycine

Metal Complexes of Biologically Important Ligands, LXVII¹¹. – Synthesis of 2-Amino Acids from Palladium(II)- and Rhodium(III)-Coordinated Imines and Oximes of 2-Oxocarboxylates

The bis-chelate complexes $Pd[O_2CC(R^1)=NOR^2]_2$ (1) and $Pd[O_2CC(R^1)=NR^2]_2$ (2, R^2 optically active substituent) are synthesized by template condensation of an α -oxocarboxylic acid with a hydroxylamine or amine component, respectively. Similarly, the Rh(III) complexes $Cp^*Rh(Cl)[O_2CC(R)=N(CHMePh)]$ (3a: R = H, 3b: R = Me) were obtained from α -oxocarboxylic acids and optically active 1-phenylethylamine. Catalytic hydrogenation of 1 and 2 gives directly the free α -amino acids with, in case of 2, ee's between 0 and 36%. Nucleophilic attack

Koordinationsverbindungen der Imine und Oxime von α -Oxocarbonsäuren sind als Zwischenstufen metallaktivierter α -Aminosäuresynthesen von Interesse. Eine attraktive und aktuelle Synthese von α -Aminosäuren ist die Addition von C-Nucleophilen an das Imino-C-Atom von α -Iminocarbonsäurederivaten^[2]. Durch Koordination von Metall-Ionen wie Co(III)^[3], Palladium(II)^[4], Ruthenium(II)^[5] und Wolfram^[6] wird das C-Atom der Iminogruppe positiviert und damit einem Angriff von Nucleophilen leichter zugänglich. Sargeson et al. berichteten auch über die Hydrierung von 2-Iminocarboxylat mit NaBH₄ zu Glycinat an Co(III)-Komplexen^[3a, 7].

Cyanocobalt(II)-Komplexe sind homogene Katalysatoren für die reduktive Aminierung von α -Oxocarbonsäuren mit Hydroxylamin und Ammoniak^[8], wobei als Zwischenstufen chelatkoordinierte Imino- und (Hydroxyimino)carboxylate auftreten können^[8]. In unserem Arbeitskreis wurden chirale metallorganische Verbindungen Cp(OC)₂MoN(R)=C(R)CO₂ mit 2-Iminocarboxylat erhalten^[9]. Die asymmetrische Hydrierung (mit H₂) von 2-(Hydroxyimino)- und 2-Iminocarbonsäuren mit optisch aktiven Substituenten an Palladium wurde eingehend untersucht^[10].

Aktuell ist die katalytische asymmetrische Hydrierung von Iminen^[11,12]. Im folgenden beschreiben wir die Darstellung von Pd(II)- und Rh(III)-Komplexen mit Hydroxyiminen bzw. Iminen des α -Oxocarboxylat-Ions. Die Liganden by the carbanions of RC(O)CH₂CO₂Et and H₂NCH(CO₂Et)₂ at the imino carbon atom of **3a** leads to the α -amino carboxylato complexes **4** and **5**. – Compounds **4a** and **5** have been characterized by X-ray diffraction. Reaction of **3a** with NaBH₄ or NaBD₄ followed by decomposition of the complex with HCl yields *N*-substituted glycine and *N*-substituted α -deuterioglycine, respectively. The diastereoselectivity (70:30) of the α -deuteration could be determined by NMR spectroscopy.

werden durch Hydrierung oder Addition von Nucleophilen in α -Aminosäuren übergeführt.

Ergebnisse und Diskussion

Synthese von Palladium(II)- und Rhodium(III)-Komplexen mit Iminen und Oximen von α -Oxocarboxylaten

Durch "Template"-Kondensation von α -Ketocarboxylaten mit O-substituierten Hydroxylaminen sind die quadra-

$$2 \operatorname{R}^{1} \operatorname{COCO}_{2} \operatorname{Na} + 2 \operatorname{R}^{2} \operatorname{NH}_{2} + \operatorname{Na}_{2} \operatorname{PdCI}_{4} \longrightarrow \operatorname{Pd}_{0} \operatorname{Pd}_{0} \operatorname{Pd}_{0} \operatorname{Pd}_{2}$$

	R1	R ²		R1	R ²
1 a	CH ₃	OCH ₃	2 a	CH ₃	CHMePh (R und S)
b	CH ₂ Ph	OCH3	b	CH3	CH ₂ CH(CH ₃)CH ₂ CH ₃ (S)
С	CH ₂ CH ₃	OCH ₃	c	CH ₂ CH ₃	CHMePh (S)
đ	CH(CH ₃) ₂	OCH3	d	CH ₂ CH ₃	CH ₂ CH(CH ₃)CH ₂ CH ₃ (S)
е	Ph	OCH3	е	CH ₂ Ph	CHMePh (R und S)
f	CH3	OCH ₂ Ph	f	CH ₂ Ph	CH2CH(CH3)CH2CH3 (S)
			g	CH(CH ₃) ₂	CHMePh (R und S)
			ĥ	CH ₂ CH(CH ₃) ₂	CHMePh (S)

tisch-planaren Bis-chelat-Palladium(II)-Komplexe 1a-f zugänglich.

Eine Reihe von Bis-chelat-Komplexe von α -(Hydroxyimino)carboxylaten mit anderen zweiwertigen Metall-Ionen wurden von Lampeka, Skopenko et al. beschrieben^[13]. Auf ähnlichem Wege konnten die α -Iminocarboxylat-Komplexe **2a-h**, die eine optisch aktive Aminkomponente enthalten, dargestellt werden.

In den IR-Spektren von 1 und 2 werden v(C=N)-Banden (ca. 1670 cm⁻¹) und v(C=O)-Banden (ca. 1630 cm⁻¹) beobachtet, die typisch für koordinierte Imino- bzw. Carboxylat-Gruppen sind. Auch die NMR-Spektren stehen im Einklang mit der vorgeschlagenen Struktur.

Die Umsetzung des Chloro-verbrückten Komplexes $[Cp*RhCl_2]_2^{[14]}$ mit Glyoxalsäure bzw. Brenztraubensäure und (S)-Phenylethylamin lieferte die Komplexe **3a-b**.

Cp*Rh-Komplexe mit a-Aminosäure-Anionen wurden von Oro et al. und von uns synthetisiert^[15]. Die Verbindungen haben "piano stool"-Geometrie mit einem chiralen Metallzentrum, das in Lösung rasch epimerisiert. Wie im Falle der α-Aminocarboxylat-Komplexe^[15] wurde auch für 3a und 3b ein Gleichgewicht zwischen den Diastereomeren $S_{\rm C}S_{\rm Rh}$ und $S_{\rm C}R_{\rm Rh}$ beobachtet. Das Diastereomeren-Verhältnis war ¹H-NMR-spektroskopisch bestimmbar (ca. 80:20 für 3a, ca. 66:34 für 3b). Ein ähnliches Diastereoisomeren-Verhältnis (80:20) wird für den vergleichbaren Molybdän-Halbsandwich-Komplex $Cp(CO)_2Mo[O_2CC(Et)=NCH-$ MePh], dessen chirales Metallzentrum konfigurationsstabil ist, festgestellt^[9]. Die IR-Banden von 3 bei ca. 1660 (Iminogruppe) und ca. 1630 cm⁻¹ (Carboxylatgruppe) bestätigen die vorgeschlagene Struktur. Charakteristisch für 3a ist auch das ¹H-NMR-Signal des N=CH-Protons bei $\delta = 7.45$.

Katalytische Hydrierung von 1c-f, 2a und 2e

Die Hydrierung der Komplexe 1c-f mit einem Palladium/Aktivkohle-Katalysator führt direkt zu den entsprechenden α -Aminosäuren. Dabei wird das zweiwertige Pal-

1a, b, 2a, 2e

ladium zum Metall reduziert. Alanin (aus 1a) und Phenylalanin (aus 1b) können in sehr guten Ausbeuten isoliert werden. Auch die Komplexe 2a und 2e lassen sich unter Abspaltung der 1-Phenylethylgruppe zu den Aminosäuren (Alanin aus 2a, Phenylalanin aus 2e) hydrieren.

Die D-Aminosäure-Anteile wurden nach Derivatisierung gaschromatographisch an einer chiralen Säule bestimmt (Tab. 1).

Tab. 1. Hydrierung der Komplexe 2a und 2e

Ausgangskomplex	Temp. [°C]	D-Anteil der Aminosäuren [%]	Enantiomeren- überschuß [%]
2a (S-Enantiomeres)	40	56	12
2a (S-Enantiomeres)	10	34	31
2a (R-Enantiomeres)	10	68	36
2e (S-Enantiomeres)	10	55	10
2e (R-Enantiomeres)	10	50	0

Ähnliche oder bessere optische Ausbeuten wurden bei der Pd(0)-katalytisierten Hydrierung von α -Ketocarbonsäuren in Gegenwart chiraler Amine ohne Metall-Ionen erzielt^[10]. Dabei wurde ebenfalls eine Verbesserung des Enantiomerenüberschusses durch Temperaturerniedrigung und mit sterisch weniger anspruchsvollen Substituenten R¹ festgestellt. Als Zwischenstufe des Katalysezyklus wird ein als (*N*,*O*)-Chelat an die Metalloberfläche koordiniertes α -Iminocarboxylat formuliert^[10b]. Die Synthese und nachfolgende Hydrierung von **2** kann als metallaktivierte, asymmetrische Transaminierung aufgefaßt werden.

Reaktion von 3a mit Nucleophilen

Mit den C-H-aciden Verbindungen Acetessigester, Benzoylessigester und Aminomalonsäure-diethylester reagiert **3a** unter basischen Bedingungen zu den α -Aminocarboxylat-Komplexen **4** und **5**. Dabei wird jeweils eine neue C-C-Bindung geknüpft.

Die nucleophile Addition an das Imino-C-Atom konnte durch die Kristallstrukturbestimmung von **4a** und **5** bewiesen werden. In beiden Verbindungen ist die neu eingeführte Aminosäure-Seitenkette an das Metallatom koordiniert (in **4a** über das Enolat-O-Atom, in **5** über die Aminogruppe).

Möglicherweise wird die Reaktion bereits dadurch gefördert, daß sich das Nucleophil zunächst über eine Donorgruppe am Metall verankert und so in räumliche Nähe der Iminogruppe gebracht wird. 4 enthält drei chirale Zentren (C, N, Rh), von denen zwei voneinander abhängig sind (C, Rh). Es sind also vier Diastereoisomere zu erwarten. Im ¹H-NMR-Spektrum von 4a werden in der Tat vier Signalsätze mit der relativen Intensität 55:34:8:3 gefunden. Auch im Spektrum von 4b treten mehrere Signalsätze auf. Dagegen ist das ¹H-NMR-Spektrum von 5 unübersichtlich und gibt keinen Aufschluß über die Diastereoisomeren-Verteilung. Die Ethylestergruppen des Aminomalonsäure-diesters sind durch eine metallaktivierte Esteraustauschreaktion mit dem Lösungsmittel Methanol in Methylestergruppen umgewandelt worden^[16]. Die Synthese von 4 und 5 zeigt, wie aus Glyoxalsäure, einem chiralen Amin und einem Kohlenstoff-Nucleophil α -Aminosäuren mit ungewöhnlichen Seitenketten diastereoselektiv am Komplex aufgebaut werden können. Die Addition anderer CH-acider Verbindungen (z.B. Cyanid, Acetylaceton) an Co(III)-koordinierte α -Iminocarboxylate wurde schon früher beschrieben^[3].

Reaktion von 3a mit NaBH₄ und NaBD₄

Die α -Iminocarboxylatgruppe in **3a** wird durch NaBH₄ in Methanol zum koordinierten α -Aminocarboxylat reduziert.

Das Reaktionsprodukt **6a** wurde nur IR-spektroskopisch identifiziert; eine v(C==N)-Bande ist nicht mehr sichtbar. Mit 0.2 M methanolischer HCl läßt sich das Glycinderivat (PhMeHC)NHCH₂CO₂H abspalten und als Hydrochlorid isolieren. Gleichzeitig wird [Cp*RhCl₂]₂ regeneriert.

Die analoge Reaktion von **3a** mit NaBD₄ in Deuteriomethanol führt über den Komplex **6b** zu *N*-substituiertem chiralen Glycin, (PhMeHC)NHCHDCO₂H \cdot HCl (7). Die Diastereoselektivität der Deuterierung (70:30) kann ¹H- NMR-spektroskopisch bestimmt werden; die α -H-Atome der beiden Diastereoisomeren unterscheiden sich genügend in ihrer chemischen Verschiebung ($\delta = 3.69/3.56$). Die D⁻-Addition an **3a** unter Verwendung von NaBD₄ und CH₃OH als Lösungsmittel ergab nach Abspaltung der Liganden ein Gemisch von (PhMeHC)NHCH₂CO₂H und (PhMeHC)-NHCHDCO₂H (40:60). Daher erfolgt wahrscheinlich die Addition von Deuterid sowohl an das N- wie das C-Atom der Iminogruppe von **3a**.

Die beschriebene Darstellung von (PhMeHC)NHCHD-CO₂H über die Zwischenstufen **3a** und **6b** ist im Prinzip eine metallaktivierte, diastereoselektive Synthese eines Nsubstituierten chiralen Glycins aus Glyoxalsäure, einem chiralen Amin und NaBD₄. Unsubstituiertes chirales Glycin wäre durch hydrogenolytische Entfernung des 1-Phenylethyl-Substituenten leicht zugänglich.

Andere Beispiele für die Verwendung von Übergangsmetallkomplexen zur Synthese von "chiralem" Glycin, das Gegenstand zahlreicher Untersuchungen ist^[17], sind der basenkatalysierte, diastereoselektive H/D-Austausch an Glycinato-Co(III)-Komplexen in D₂O^[18a] sowie die Photolyse von optisch aktiven Chrom-Carben-Komplexen^[18b].

Kristallstrukturen von 4a und 5

Einkristalle der Verbindung **4a** wurden aus Dichlormethan/Hexan gezüchtet. Im Kristall wurde das $S_C S_{C(\alpha)} S_N S_{Rh}$ -Diastereoisomere gefunden (Abb. 1). Der α -Aminocarboxylat-Ligand ist dreizähnig koordiniert über die Aminogruppe, die Carboxylatgruppe und das Enolat-Sauerstoffatom des deprotonierten β -Ketoester-Substituenten. Die Rh–N- und Rh–O-Bindungslängen entsprechen etwa denen in anderen Cp*Rh-Komplexen mit α -Aminosäure-Anionen^[15]. Die aufgeweiteten Bindungswinkel C3–C4–C16 (125.1°) und O4–C13–C3 (127.6°) sind offenbar eine Folge sterischer Abstoßung zwischen der C16-Methylgruppe und dem Carbonyl-Sauerstoffatom O4.

Einkristalle von 5 konnten aus Dichlormethan/Hexan erhalten werden. Der untersuchte Kristall enthielt das Stereo-

Abb. 1. Struktur von **4a** im Kristall. Ausgewählte Bindungslängen [pm] und -winkel [°]: Rh-O1 207.1(4), Rh-O3 208.5(4), Rh-N1 211.6(4), O3-C4 130.4(5), C4-C3 137.9(6); O1-Rh-N1 78.5(1), O1-Rh-O3 86.0(1), O3-Rh-N1 85.1(1), Rh-N1-C5 118.9(2), Rh-O3-C4 130.4(3), C3-C4-C16 125.1(4), O4-C13-C3 127.6(4)

isomere $S_C R_{C(\alpha)} R_N R_{Rh}$ (Abb. 2). Als Solvate sind je ein Äquivalent H₂O und CH₂Cl₂ enthalten. Der Aminocarboxylat-Ligand koordiniert nur zweizähnig über die beiden Aminogruppen. Die Carboxylatgruppe ist nicht koordiniert, bildet aber Wasserstoffbrücken zu H-N1 (O2-N1 intramolekular: 266.3 pm) und zu dem H₂O-Solvatmolekül aus (O1-O7: 272.6 pm). Der Winkel Rh1-N1-C8 (121.3°) weicht deutlich vom Idealwert (109.5°) ab. Sterische Wechselwirkungen zwischen dem 1-Phenylethyl-Substituenten und dem Cp*-Liganden bleiben dadurch relativ gering.

Abb. 2. Molekülstruktur von 5 im Kristall. H_2O (O7) und CH_2Cl_2 (C26, Cl2, Cl3) sind Solvate. Ausgewählte Bindungslängen [pm] und -winkel [°]: Rh-Cl1 241.6(3), Rh-N1 217.9(5), Rh-N2 214.3(5); Cl1-Rh-N1 89.7(1), Cl1-Rh-N2 90.0(1), N1-Rh-N2 80.4(1)

Der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie gilt unser herzlicher Dank für großzügige Förderung. Herrn Professor E. Wünsch, Max-Planck-Institut für Biochemie, Martinsried, danken wir für Racemisierungstests, Herrn Dr. R. D. Lampeka danken wir für wertvolle Diskussionen.

Experimenteller Teil

Alle Reaktionen wurden unter N₂ durchgeführt. Kommerziell erhältliches Methanol (puriss., <0.05% H₂O) wurde ohne weitere Reinigung eingesetzt. – IR: Perkin Elmer, Modell 297, 325 und 841, Nicolet ZDX 5. – NMR: Jeol GSX 270, EX 400 und FX 90 Q; Solvens als interner Standard; ¹³C-Spektren sind protonenentkoppelt. – D-Aminosäure-Anteile wurden nach Überführung in *N*-(Pentafluorpropionyl)aminosäure-propylester an einem Carlo-Erba-Fractovap 4160-Gaschromatographen mit Chirasil-Val-Säule bestimmt. – [Cp*RhCl₂]₂ wurde nach Literaturvorschrift hergestellt^[14].

Darstellung der Komplexe $Pd[O_2CC(R^i)=NOR^2]_2$ (1 a-f): Zu einer wäßrigen Lösung von 2.00 mmol Natrium- α -oxocarboxylat gibt man 2.00 mmol des entsprechenden O-Alkylhydroxylamin-Derivats (als Hydrochlorid) und 2.00 mmol 1 N NaOH (2.00 ml). Man läßt 10-24 h bei Raumtemp. rühren und tropft dann eine wäßrige Lösung von 1.00 mmol (294 mg) Na₂PdCl₄ zu. An der Eintropfstelle

wird die braune Palladat-Lösung sofort entfärbt. Nach Beendigung der Zugabe (in einigen Fällen bereits während des Zutropfens) beginnt sich ein gelber Niederschlag abzuscheiden. Nach gründlichem Waschen mit kaltem Wasser wird im Hochvakuum getrocknet. Zur weiteren Reinigung wird das gelbe Pulver aus Ethanol/Wasser umkristallisiert. Bei der Synthese von 1d wurde wegen der besseren Löslichkeit das Calciumsalz der Ketocarbonsäure verwendet.

1a: Ausb. 200 mg (59%). – IR (KBr): $\tilde{v} = 1670 \text{ cm}^{-1}$ (s, C=N), 1628 (s, C=O). – ¹H-NMR (CD₃NO₂): $\delta = 4.02$ (s, 3 H, OCH₃), 2.17 (s, 3 H, CCH₃). – C₈H₁₂N₂O₆Pd (338.6): ber. C 28.37, H 3.58, N 8.27; gef. C 28.24, H 3.55, N 8.27.

1b: Ausb. 442 mg (90%). - IR (KBr): $\tilde{v} = 1673 \text{ cm}^{-1}$ (s, C=N), 1619 (s, C=O). - ¹H-NMR (CD₃NO₂): $\delta = 7.33$ (s, 5H, Ph), 3.99 (s, 3H, OCH₃), 3.93 (s, 2H, CH₂). - C₂₀H₂₀N₂O₆Pd (490.8): ber. C 48.94, H 4.12, N 5.71; gef. C 48.77, H 4.04, N 5.46.

1c: Ausb. 190 mg (52%). – IR (KBr): $\tilde{v} = 1679$ cm⁻¹ (s, C=N), 1622 (sh, C=O). – ¹H-NMR (CD₃NO₂): δ = 4.02 (s, 3H, CCH₃), 2.57 (q, 2H, CH₂), 1.14 (t, 3H, CH₂CH₃). – C₁₀H₁₆N₂O₆Pd (366.7): ber. C 32.75, H 4.41, N 7.64; gef. C 32.33, H 4.63, N 7.61.

1d: Ausb. 178 mg (45%). – IR (KBr): $\tilde{v} = 1677 \text{ cm}^{-1}$ (s, C=N), 1623 (s, C=O). – ¹H-NMR (CDCl₃): $\delta = 4.00$ (s, 3 H, OCH₃), 3.40 [m, 1 H, CH(CH₃)₂], 1.25 [d, 6H, CH(CH₃)₂]. – C₁₂H₂₀N₂O₆Pd (394.7): ber. C 36.51, H 5.12, N 7.10; gcf. C 36.40, H 5.37, N 7.18.

1e: Ausb. 134 mg (29%). – IR (KBr): $\tilde{v} = 1680 \text{ cm}^{-1}$ (s, C=N), 1620 (sh, C=O). – ¹H-NMR (CD₃NO₂): $\delta = 7.6$ (m, 5H, Ph), 4.08 (s, 3H, CH₃). – C₁₈H₁₆N₂O₆Pd (462.8): ber. C 46.71, H 3.49, N 6.05; gef. C 43.68, H 2.95, N 5.88.

1f: Ausb. 226 mg (47%). – IR (KBr): $\tilde{v} = 1678 \text{ cm}^{-1}$ (s, C=N), 1625 (sh, C=O). – ¹H-NMR (CDCl₃): $\delta = 7.40$ (m, 5H, Ph), 5.30 (s, 2H, CH₂), 2.04 (s, 3H, CH₃). – C₂₀H₂₀N₂O₆Pd (480.8): ber. C 48.94, H 4.12, N 5.71; gef. C 48.39, H 4.29, N 6.11.

Katalytische Hydrierung der Komplexe 1a, b: Eine Suspension von 0.50 mmol des Komplexes in 10 ml Methanol bzw. Wasser wird mit einer Spatelspitze Pd/C-Katalysator versetzt. Bei Raumtemp. wird 20 min ein leichter Wasserstoffstrom durchgeleitet, wobei eine farblose Lösung entsteht, in der sich ein schwarzer Niederschlag absetzt. Mehrmaliges Filtrieren und Entfernen des Lösungsmittels i.Vak. liefert einen farblosen, zum Teil öligen Rückstand, der beim mehrmaligen Digerieren mit Ether/Pentan kristallisiert. Nach Trocknen i.Vak. erhält man die freien α -Aminosäuren (Alanin aus 1a, Phenylalanin aus 1b). Die ¹H-NMR-Spektren stimmen mit Literaturangaben überein^[19].

Darstellung der Komplexe $Pd[O_2CC(R^t)=NR^2]_2$ (2a-h): 2.00 mmol des Natriumsalzes der entsprechenden α -Oxocarbonsäure werden mit 2.00 mmol des opt. aktiven Amins in 40 ml wasserfreiem Methanol bei Raumtemp. gerührt (Reaktionszeiten: 3 h für 2a, 20 h für 2c, 3 d für 2b, d und g, 30 d für 2h). Im Falle der chiralen Komplexe 2a, e und g sind spektroskopische und analytische Daten nur für das S-Enantiomere angegeben. Zu der klaren Lösung werden 1.00 mmol Na₂PdCl₄ gegeben. Nachdem sich das Palladat aufgelöst hat, wird noch 1 h bei Raumtemp. gerührt, wobei eine hellgelbe Lösung entsteht. Das Lösungsmittel wird i.Vak. vollständig entfernt und der zum Teil ölige Rückstand in 10 ml Hexan gerührt, bis er kristallisiert. Der gelbe Niederschlag wird abzentrifugiert, mit Hexan und anschließend mit Wasser mehrmals gewaschen und i. Hochvak. getrocknet.

2a: Ausb. 380 mg (78%). – IR (KBr): $\tilde{v} = 1665 \text{ cm}^{-1}$ (s, C=N), 1632 (s, C=O). – ¹H-NMR ([D₆]Aceton): $\delta = 7.5$ (m, 5H, Ph), 5.25 (q, 1 H, CH), 2.28 (s, 3 H, CCH₃), 1.80 (d, 3 H, CHCH₃). – ¹³C-NMR ([D₆]Aceton): $\delta = 176.60$ (C=O), 171.50 (C=N), 139.56, 128.57, 127.85, 127.59 (Phenyl-C), 62.43 (CH), 18.21 (CHCH₃), 17.53 (CCH₃). $-C_{22}H_{24}N_2O_4Pd$ (486.9): ber. C 54.27, H 4.98, N 5.76; gef. C 53.69, H 5.30, N 5.81.

2b: Ausb. 355 mg (85%). – IR (KBr): $\tilde{v} = 1668 \text{ cm}^{-1}$ (s, C=N), 1631 (sh, C=O). – ¹H-NMR (CDCl₃): $\delta = 3.31$ (m, 2 H, NCH₂), 2.15 (s, 3H, CCH₃), 2.03–0.82 [m, CH(CH₃)CH₂CH₃]. – C₁₆H₂₈N₂O₄Pd (418.9): ber. C 45.88, H 6.75, N 6.69; gef. C 44.86, H 6.35, N 6.62.

2c: Ausb. 458 mg (89%). – IR (KBr): $\tilde{v} = 1667 \text{ cm}^{-1}$ (s, C=N), 1630 (s, C=O). – ¹H-NMR (CDCl₃): $\delta = 7.36$ (m, 5H, Ph), 5.13 (q, 1H, CH), 2.54 (q, 2H, CH₂CH₃), 1.77 (d, 3H, CHCH₃), 0.97 (t, 3H, CH₂CH₃). – ¹³C-NMR ([D₆]Aceton): $\delta = 180.39$ (C=O), 170.83 (C=N), 139.75, 128.53, 127.75, 127.20 (Phenyl-C), 61.68 (CH), 25.27 (CH₂CH₃), 18.18 (CHCH₃), 10.57 (CH₂CH₃). – C₂₄H₂₈N₂O₄Pd (514.9): ber. C 55.98, H 5.49, N 5.44; gef. C 55.81, H 5.74, N 5.72.

2d: Ausb. 165 mg (37%). – IR (KBr): $\tilde{v} = 1663 \text{ cm}^{-1}$ (s, C=N), 1632 (s, C=O). – ¹H-NMR ([D₆]Aceton): $\delta = 3.5$ (dd, 2H, NCH₂), 2.58 (q, 2H, CCH₂CH₃), 1.5–0.8 [m, CCH₂CH₃ und CH(CH₃)-CH₂CH₃]. – C₁₈H₃₂N₂O₄Pd (446.9): ber. C 48.37, H 7.23, N 6.27; gef. C 48.54, H 7.43, N 6.07.

2e: Ausb. 505 mg (79%). – IR (KBr): $\tilde{v} = 1667 \text{ cm}^{-1}$ (s, C=N), 1628 (s, C=O). – ¹H-NMR ([D₆]Aceton): $\delta = 7.3$ (m, 10H, Ph), 5.40 (q, 1 H, CH), 4.15 (s, 2 H, CH₂), 1.60 (d, 3 H, CH₃). – ¹³C-NMR ([D₆]Aceton): $\delta = 176.33$ (C=O), 171.65 (C=N), 138.87, 135.10, 129.22, 128.24, 127.75, 127.53, 127.40 (Phenyl-C), 62.33 (CH), 36.78 (CH₂), 17.27 (CH₃). – C₃₄H₃₂N₂O₄Pd (639.1): ber. C 63.89, H 5.06, N 4.38; gef. C 63.45, H 5.41, N 4.32.

2f: Ausb. 388 mg (68%). – IR (KBr): $\tilde{v} = 1665 \text{ cm}^{-1}$ (s, C=N), 1640 (sh, C=O). – ¹H-NMR ([D₆]Aceton): $\delta = 7.32$ (s, 5H, Ph), 4.03 (s, 2H, CH₂Ph), 3.5 (dd, 2H, NCH₂), 1.5–0.8 [m, CH(CH₃)CH₂CH₃]. – C₂₈H₃₆N₂O₄Pd (571.1): ber. C 58.89, H 6.37, N 4.91; gef. C 58.42, H 6.25, N 4.98.

2g: Ausb. 420 mg (78%). – IR (KBr): $\tilde{v} = 1673 \text{ cm}^{-1}$ (s, C=N), 1620 (m, C=O). – ¹H-NMR ([D₆]Aceton): $\delta = 7.59 - 7.32$ (m, 5H, Ph), 5.35 [q, 1 H, CH(CH₃)Ph], 3.20 [m, 1 H, CH(CH₃)₂], 1.80 [d, 3H, CH(CH₃)Ph], 1.22 – 0.99 [dd, 6H, CH(CH₃)₂]. – ¹³C-NMR ([D₆]Aceton): $\delta = 183.54$ (C=O), 169.35 (C=N), 140.09, 128.75, 127.82, 127.07 (Phenyl-C), 61.24 [CH(CH₃)Ph], 31.32 [CH(CH₃)₂], 18.12 [CH(CH₃)Ph], 17.72, 17.42 [CH(CH₃)₂]. – C₂₆H₃₆N₂O₄Pd (543.0): ber. C 57.51, H 5.95, N 5.16; gef. C 57.20, H 6.37, N 5.43.

2h: Ausb. 423 mg (81%). – IR (KBr): $\tilde{v} = 1664 \text{ cm}^{-1}$ (s, C=N), 1612 (m, C=O). – ¹H-NMR (CDCl₃): $\delta = 7.34$ (m, 5H, Ph), 5.07 [q, 1H, CH(CH₃)Ph], 2.59–2.49 (dd, 2H, CH₂), 1.98 [m, 1H, CH(CH₃)₂], 1.79 [d, 3H, CH(CH₃)Ph], 0.97–0.86 [dd, 6H, CH(CH₃)₂]. – ¹³C-NMR (CDCl₃): $\delta = 178.18$ (C=O), 171.71 (C=N), 138.32, 128.37, 127.85, 126.94 (Phenyl-C), 61.78 [CH(CH₃)Ph], 39.97, 28.00 [CH₂ und CH(CH₃)₂], 22.64 [CH(CH₃)₂], 18.31 [CH(CH₃)Ph]. – C₂₈H₃₆N₂O₄Pd (571.1): ber. C 58.89, H 6.37, N 4.91; gef. C 58.53, H 6.78, N 4.91.

Katalytische Hydrierung der Komplexe 2a und 2e: Eine Lösung von 0.50 mmol Komplex in 40 ml wasserfreiem Methanol wird mit einer Spatelspitze Pd/C-Katalysator versetzt. Bei 40 bzw. 10 °C wird 4 h ein schwacher Wasserstoffstrom durchgeleitet, wobei die Lösung entfärbt wird. Die Suspension wird mehrmals filtriert, das Lösungsmittel i.Vak. entfernt, der farblose Rückstand mit Ether digeriert und getrocknet. Aus 2a erhält man Alanin, aus 2e Phenylalanin. Die ¹H-NMR-Spektren der freien Aminosäuren stimmen gut mit Literaturangaben überein^[19].

Darstellung von $Cp*Rh(Cl)[O_2CC(R)=N(CHMePh)]$ (3a, 3b)

3a: Zu 309 mg (0.50 mmol) [Cp*RhCl₂]₂ und 114 mg (1.00 mmol) Natriumglyoxylat-hydrat gibt man 128 µl (1.00 mmol) (S) 1-Phenylethylamin und rührt 3 min mit 2 ml Wasser. Dann gibt man 20 ml Methanol zu, rührt die klare, rote Lösung noch 5 min und engt zur Trockne ein. Der Rückstand wird in 5 ml Methanol (puriss.) aufgenommen und das Lösungsmittel erneut vollständig abdestilliert. Nach Lösen in 10 ml Dichlormethan wird der Niederschlag abzentrifugiert und die klare rote Lösung mit viel Hexan überschichtet. Nach 2 Wochen werden rote Kristalle isoliert und kurz i.Vak. getrocknet. Ausb. 396 mg (88%). - IR (Nujol, <600 cm⁻¹, Polyethylen): $\tilde{v} = 1658 \text{ cm}^{-1}$ (s, C=N), 1634 (s, C=O), 277, 260 (m, RhCl). - ¹H-NMR (CD₂Cl₂, 2 Diastereoisomere im Verhältnis 80:20): $\delta = 7.15 - 7.5$ (m, 6 H, Ph und N=CH), 5.32/5.23 [q, J = 7.3/6.8 Hz, 1H, CH(CH₃)Ph], 1.78/1.82 [d, J = 6.8/7.3 Hz, $CH(CH_3)Ph$], 1.65/1.58 (s, 15H, Cp*). - $C_{20}H_{25}CINO_2Rh$ (449.8): ber. C 53.41, H 5.60, Cl 7.88, N 3.11; gef. C 53.07, H 5.67, Cl 8.45, N 2.92.

3b: 93 mg (0.15 mmol) [Cp*RhCl₂]₂, 33 mg (0.30 mmol) Natriumpyruvat und 38 l (0.30 mmol) (S) 1-Phenylethylamin werden in 3 ml Methanol (puriss.) 24 h gerührt. Das Lösungsmittel wird abdestilliert, der Rückstand in 5 ml Dichlormethan aufgenommen und das zurückbleibende NaCl abzentrifugiert. Die Dichlormethan-Phase wird mit ca. 20 ml Hexan überschichtet. Nach etwa 1 Woche werden hellrote Kristalle isoliert. Ausb. 122 mg (88%). – IR (Nujol, <600 cm⁻¹, Polyethylen): $\tilde{v} = 1658$ cm⁻¹ (s, C=N), 1630 (m, C=O), 265, 260 (m, RhCl). – ¹H-NMR (CDCl₃, 2 Diastereoisomere im Verhältnis ca. 66:34): $\delta = 7.45 - 7.20$ (m, 5H, Ph), 5.27/5.69 [q, J = 6.8/7.1 Hz, 1 H, CH(CH₃)Ph], 2.23/1.92 (s, 3H, CCH₃), 1.97 [d, J = 6.8 Hz, 3 H, CH(CH₃)Ph], 150/167 (s, 15H, Cp*). – C₂₁H₂₇ClNO₂Rh (463.8): ber. C 54.38, H 5.87, N 3.02; gef. C 51.86, H 6.07, N 2.96.

Synthese der Komplexe 4-6 durch Reaktion von 3a mit Nucleophilen

4a: Zu einer Lösung von 45 mg (0.10 mmol) 3a in 2 ml Methanol (puriss.) gibt man zuerst 19 µl (0.15 mmol) Acetessigester und dann 0.10 mmol Natriummethanolat (als ca. 1 M methanolische Lösung, frisch titriert). Es wird 3 h gerührt, dann die orangefarbene Lösung zur Trockne eingeengt, der Rückstand in 5 ml Dichlormethan aufgenommen und der Niederschlag (NaCl) abzentrifugiert. Die Dichlormethan-Lösung versetzt man mit 20 ml Hexan und engt unter Rühren zur Trockne ein. Der Rückstand wird einige h mit 5 ml Hexan/Ether (1:1) verrührt, die Suspension über Nacht bei - 30°C aufbewahrt, das orangefarbene Pulver abzentrifugiert und 5 h bei 60°C getrocknet. Durch Überschichten einer Dichlormethan-Lösung mit Hexan können auch orangefarbene Kristalle erhalten werden. Ausb. (Pulver) 45 mg (82%). – IR (Nujol): $\tilde{v} = 3080 \text{ cm}^{-1}$ (w, br., NH), 1669 (s, Ester-C=O), 1631 (s, Carboxylat-C=O), 1621 (s, Enolat-C=C-O). - ¹H-NMR (CD₃OD), vier Diastereoisomere im Verhältnis 55: 34: 8: 3): $\delta = 7.6 - 7.2$ (m, 5H, Ph), 4.71/4.47/4.40/4.17 $[q, J = 7.3 \text{ Hz}, 1 \text{ H}, CH(CH_3)], 4.59/4.24/4.33 (s, 1 \text{ H}, CHCO_2),$ 4.0-3.55 (m, 2H, CH₂CH₃), 2.24/2.30/2.33/2.14 [s, 3H, C(O)CH₃], 1.70/1.61/1.8-1.5 [s, 15H, Cp*, teilweise Überlagerung mit CH(CH₃)Ph-Protonen], 1.8-1.5 [CH(CH₃)Ph, Überlagerung mit Cp*-Protonen], 0.97/1.13/0.83/1.07 (t, J = 7.1 Hz, 3H, CH₂CH₃). --¹³C-NMR (CD₃OD, meist nur Signale für die beiden häufigsten Diastereomeren zu erkennen): $\delta = 186.15$ und 183.64/183.43 und 183.21 (C=C-O und CO₂Rh), 170.38/171.13 (CO₂CH₂CH₃), 141.22, 141.28 (Phenyl-ipso-C), 130-129 (Phenyl-C, C=C-O), 94.02/93.85 $[d, J_{CRh} = 9.4 Hz/8.9 Hz, C_5(CH_3)_5], 61.89 und 56.65/61.21 und 58.97$ [CHCO₂ und CH(CH₃)Ph], 59.61/60.02 (CH₂CH₃), 28.32/28.73 [d, J = 1.6 Hz, C(O)CH₃], 16.23/19.04 [CH(CH₃)Ph], 14.92/14.81

 (CH_2CH_3) , 8.59/8.61/8.96/9.04 $[C_5(CH_3)_5]$. - $C_{26}H_{34}NO_3Rh$ (543.5): ber. C 57.46, H 6.31, N 2.58; gef. C 55.77, H 6.28, N 2.60.

4b: Zu 45 mg 3a in 3 ml Methanol (puriss.) gibt man 19 µl (0.11 mmol) Benzoylessigsäure-ethylester und 0.10 mmol Natriummethanolat (als ca. 1 M methanolische Lösung, frisch titriert). Es wird 5 h gerührt, dann zur Trockne eingeengt. Der Rückstand wird in 5 ml Dichlormethan aufgenommen und der Niederschlag (NaCl) abzentrifugiert. Die klare Dichlormethan-Lösung wird auf 2 ml eingeengt, unter Rühren mit 40 ml Hexan versetzt und über Nacht bei - 30°C aufbewahrt. Die Suspension wird kalt zentrifugiert und das orangefarbene Pulver 5 h bei 60°C getrocknet. Ausb. 30 mg (50%). -IR (Nujol): $\tilde{v} = 3070 \text{ cm}^{-1}$ (w, br., NH), 1656 (m, Ester-C=O), 1640 (m, Carboxylat-C=O), 1617 (s, Enolat-C=C-O). - ¹H-NMR (CD₃OD, es sind nur die Signalsätze von zwei Diastereoisomeren aufgeführt, Verhältnis ca. 60: 20): $\delta = 7.6 - 7.2$ (m, Ph), 4.76/4.17 [q, J = 7.3 Hz, CH(CH₃)Ph], 4.73/4.04 (s, CHCO₂), 3.8-3.5 (m, CH₂CH₃), 1.70 [s, Cp*, Überlagerung mit CH(CH₃)Ph], 2.0-1.5 [m, CH(CH₃)Ph], 0.72/1.17 (t, J = 7.1/6.8 Hz, CH₂CH₃). C31H36NO5Rh (605.5): ber. C 61.49, H 5.99, N 2.31; gef. C 58.92, H 6.19, N 2.43.

5: Zu 45 mg 3a und 23 mg (0.11 mmol) Aminomalonsäure-diethylester-hydrochlorid in 3 ml Methanol (puriss.) gibt man 31 µl (0.22 mmol) Triethylamin und läßt 5 h rühren. Dann versetzt man mit 40 ml Ether und bewahrt 10 d bei -30° C auf. Das auskristallisierte Triethylamin-hydrochlorid wird abzentrifugiert und die gelbe Lösung zur Trockne eingeengt. Man löst den Rückstand in 2 ml Dichlormethan und fällt 5 mit viel Hexan als gelbes Pulver aus, das 2 h bei 60°C getrocknet wird. Durch Überschichten einer Dichlormethan-Lösung mit Hexan erhält man eine kleine Menge dunkelgelber Kristalle, die je ein Äquivalent H₂O und CH₂Cl₂ enthalten. Die Solvate können offenbar durch Trocknen nicht vollständig entfernt werden. Ausb. (Pulver) 65%. - IR (Nujol): $\tilde{v} = 3528 \text{ cm}^{-1}$ (m, H₂O), 3340 w, br., 3260 sh, 3140 w, br., 2279 m (NH), 1753 (s, Ester-C=O), 1552 (m, Carboxylat-C=O). - $C_{25}H_{34}ClN_2O_6Rh \cdot H_2O \cdot 0.15 CH_2Cl_2$ (627.7): ber. C 48.13, H 5.83, Cl 7.34, N 4.46; gef. C 47.18, H 5.68, Cl 6.82, N 4.36.

6a: Eine Lösung von 45 mg (0.10 mmol) **3a** in 3 ml Methanol (puriss.) kühlt man unter N₂ auf -78 °C und tropft langsam unter Rühren 0.053 mmol NaBH₄ (als 0.5 M Lösung in Ethanol) zu. Zur Vermeidung eines Überdrucks wird anschließend das Reaktionsgefäß evakuiert. Man läßt diesen Versuchsaufbau 4 d stehen und engt dann die inzwischen auf Raumtemp. erwärmte Reaktionslösung zur Trockne ein. Der Rückstand wird in 5 ml Dichlormethan aufgenommen und der zurückbleibende farblose Niederschlag abzentrifugiert. Die Dichlormethan-Lösung wird eingeengt und über Nacht mit Ether zu einem orangefarbenen Pulver verrührt. **6a** wurde nur IR-spektroskopisch charakterisiert.

6b wird analog mit NaBD₄ und Deuteriomethanol als Lösungsmittel dargestellt. – IR (Nujol): $\tilde{v} = 3190$ cm⁻¹ (w, br, NH), 1620 (s, br, C=O).

Abspaltung von [(PhMeHC)NH₂CHXCO₂H]Cl (X = H, D) aus 6a und 6b: Das Rohprodukt 6 (0.10-mmol-Ansatz) wird mit 5 ml 0.2 M methanolischer HCl versetzt, die Mischung 15 min gerührt, auf ca. 1.5 ml eingeengt und 2 h bei -78 °C aufbewahrt. Man zentrifugiert das ausgefallene [Cp*RhCl₂]₂ ab (ca. 70% Ausb., bezogen auf eingesetztes 3a) und versetzt die Lösung unter Rühren mit 40 ml Ether/Hexan (1:1). Der Niederschlag wird abzentrifugiert, in 5 ml Chloroform aufgenommen und die Lösung unter Rühren mit 20 ml Ether versetzt. Man zentrifugiert nochmals und trocknet das erhaltene cremefarbene Pulver 2 h bei 60°C. Ausb. 12 mg (56% bezogen auf 3a). – ⁱH-NMR von [(PhMeHC)- NH₂CH₂CO₂H]Cl (CD₃OD): δ = 7.48 (s, 5 H, Ph), 4.47 (q, *J* = 7.0 Hz, 1 H, CHCH₃), 3.69 (d, *J* = 16.7 Hz, 1 H, CH₂), 3.57 (d, *J* = 16.7 Hz, 1 H, CH₂), 1.71 (d, *J* = 7.0 Hz, 3 H, CHCH₃). Das Spektrum von [(PhMeHC)NH₂CHDCO₂H]Cl unterscheidet sich nur in den Signalen für die CHD-Gruppe: δ = 3.69 (s, br.), 3.56 (s, br.) (Integral-Verhältnis 30: 70).

Röntgenstrukturanalysen^[20]: Einzelheiten siehe Tab. 2.

1 au. 2. Daten zu den Kontgenstrukturanarysen	Tab. 2	. Daten	zu den	Röntgenstrukturanal	vsen ^[20]
---	--------	---------	--------	---------------------	----------------------

	4a	5		
Summenformel	$\mathrm{C}_{26}\mathrm{H}_{34}\mathrm{NO}_{5}\mathrm{Rh}$	$\substack{\substack{C_{25}H_{34}ClN_2O_6Rh\\ \cdot H_2O \cdot CH_2Cl_2}}$		
Molare Masse [g·mol ⁻¹]	543.5	699.9		
Raumgruppe (Nr.) a [pm] b [pm]	$\begin{array}{c} P2_{1}2_{1}2_{1}(19) \\ 1065.3(2) \\ 1196.9(3) \\ 1084.6(5) \end{array}$	$\begin{array}{c} P2_{1}2_{1}2_{1}(19) \\ 1063.4(3) \\ 1303.4(3) \\ 2180.6(5) \end{array}$		
v_{106} m3	1984.0(5)	2189.0(5)		
v [10-pm-]	2030.4 A	3034. 5		
α (her) [g.cm ⁻³]	1 43	1 53		
$\mu [M_0-K][cm^{-1}]$	6.97	8.62		
Diffraktometer	Enraf Nonius	CAD		
Meßtemperatur [K]	298	298		
2 Θ - Bereich [°]	4-46	4-46		
Abtastmodus	ω	ω		
Abtastbreite [°]	0.9	1.2		
Gemessene Reflexe	3833	4511		
Symmetriunabhängige Reflexe	3483	4050		
Beobachtete Reflexe mit $I > 2 \sigma(I)$	3364	3810		
Programm	SHELXTL-P	LUS		
Absorptionskorrektur	empirisch			
T _{min} / T _{max} (%) Verfeinerte Parameter	96.17/99.85	93.47/99.95		
(Nicht H-Atome)	298	358		
H-Atome	geometrisch position	niert mit festem U _{iso}		
R	0.0234 ^{a)}	0.0362 ^{b)}		
R _w	0.0242	0.0263		
Extrema der letzten				
Differenz-Fourier-Synthese				
[e·10 ⁻⁶ pm ⁻³]	0.48/-0.63	1.02/-0.98		

^{a)} Werte für das Stereoisomere $S_C R_{C(\alpha)} R_N R_{Rh}$: R = 0.0278, $R_w = 0.0250$. – ^{b)} Werte für das Stereoisomere $S_C S_{C(\alpha)} S_N S_{Rh}$: R = 0.0394, $R_w = 0.0297$.

^{*} Herrn Professor Dr. Wolfgang Steglich zum 60. Geburtstag gewidmet.

 ^[1] LXVI. Mitteilung: Th. Pill, W. Beck, Z. Naturforsch., im Druck.
 ^[2] J.-C. Fiaud, H. B. Kagan, Tetrahedron Lett. **1970**, 1813-1816;
 1971, 1019-1022; D. Ben-Ishai, J. Altman, Z. Bernstein, N. Peled, Tetrahedron **1978**, 34, 467-473; R. Kober, W. Hammes, W. Steglich, Angew. Chem. **1982**, 94, 213-214; Angew. Chem. Int. Ed. Engl. **1982**, 21, 203; T. Bretschneider, W. Miltz, P. Mün-

ster, W. Steglich, Tetrahedron 1988, 44, 5403-5414; Y. Yamamoto, W. Ito, *ibid.* 1988, 44, 5415-5423; H. Hiemstra, W. N. Speckamp in Comprehensive Organic Synthesis (Ed.: B. M. Trost), Pergamon Press, Oxford, 1991, Bd. 2, S. 1074-1082, und dort zitierte Literatur; G. Courtois, L. Miginiac, J. Organomet. Chem. 1993, 450, 33-40.

- ^[3] ^[3a] J. M. Harrowfield, A. M. Sargeson, J. Am. Chem. Soc. 1974, 96, 2634-2635; 1979, 101, 1514-1520. ^[3b] B. T. Golding, J. M. Harrowfield, G. B. Robertson, A. M. Sargeson, P. O. Whimp, J. Am. Chem. Soc. 1974, 96, 3691-3692. ^[3c] J. Springborg, R. J. Geue, A. M. Sargeson, D. Taylor, M. R. Snow, J. Chem. Soc., Chem. Commun. 1978, 647-649; R. J. Geue, J. Springborg, A. M. Sargeson, Acta Chem. Scand., Ser. A, 1987, 41, 158-172; J. M. Harrowfield, A. M. Sargeson, P. O. Whimp, Inorg. Chem. 1991, 30, 1792-1800.
- [4] J. Y. Chenard, D. Commereuc, Y. Chauvin, J. Organomet. Chem. 1971, 33, C69.
- ⁽⁵⁾ G. C. Martin, J. M. Boncella, Organomet. 1989, 8, 2968 2970;
 G. C. Martin, J. M. Boncella, E. J. Wucherer, *ibid.* 1991, 10, 2804-2811.
- ^[6] S. G. Feng, J. L. Templeton, J. Am. Chem. Soc. 1989, 111, 6477-6478.
- ^[7] J. M. Harrowfield, A. M. Sargeson, J. Am. Chem. Soc. **1979**, 101, 1514-1520; P. J. Lawson, M. G. McCarthy, A. M. Sargeson, *ibid.* **1982**, 104, 6710-6716.
- ^[8] M. Murakami, J.-W. Kang, Bull. Chem. Soc. Jpn. 1963, 36, 763-769.
- ¹⁹ H. J. Meder, W. Petri, W. Beck, Chem. Ber. 1984, 117, 827-832.
 ¹⁰ H. J. Meder, W. Petri, W. Beck, Chem. Ber. 1984, 117, 827-832.
 ¹⁰ I¹⁰ R. G. Hiskey, R. C. Northrop, J. Am. Chem. Soc. 1961, 83, 4798-4800; K. Harada, K. Matsumoto, J. Org. Chem. 1968, 33, 4467-4470; K. Matsumoto, K. Harada, *ibid.* 4526-4529; K. Harada, T. Iwasaki, T. Okawara, Bull. Chem. Soc. Jpn. 1973, 46, 1901-1902; K. Harada in Asymmetric Synthesis (Ed.: J. D. Morrison), Academic Press, Orlandeo, 1985, Bd. 5, S. 345-383, und dort zitierte Literatur. ^{1(10b)} K. Harada, K. Matsumoto, J. Org. Chem. 1967, 32, 1794-1800; K. Harada, T. Munegumi in Comprehensive Organic Synthesis (Ed.: B. M. Trost), Pergamon Press, Oxford, 1991, Bd. 8, S. 145-149.
- [11] J. Bakos, A. Orosz, B. Heil, M. Laghmari, P. Lhoste, D. Sinou, J. Chem. Soc., Chem. Commun. 1991, 1684 – 1685; A. G. Becalski,
 W. R. Cullen, M. D. Fryzuk, B. R. James, G.-J. Kang, Inorg. Chem. 1991, 30, 5002 – 5008; F. Spindler, B. Pugin, H.-U. Blaser, Angew. Chem. 1990, 102, 561 – 562; Angew. Chem. Int. Ed. Engl. 1990, 29, 558 – 559.

- ^[12] M. J. Burk, J. E. Fenster, J. Am. Chem. Soc. 1992, 114, 6266-6267; C. A. Willoughby, S. L. Buchwald, *ibid*. 1992, 114, 7562-7564; C. Bolm, Angew. Chem. 1993, 105, 245-246; Angew. Chem. Int. Ed. Engl. 1993, 32, 232-233 und dort zitierte Literatur.
- ^[13] V. V. Skopenko, T. Yu. Sliva, Yu. A. Simonov, A. A. Dvorkin, N. D. Mazus, R. D. Lampeka, I. I. Malinovskii, Russ. J. Inorg. Chem. 1990, 35, 993-995; R. D. Lampeka, T. Yu. Sliva, V. V. Skopenko, Ukrain. Khim. Zh. 1990, 56, 1023-1027; R. D. Lampeka, Z. D. Uzakbergenova, V. V. Skopenko, Z. Naturforsch., Teil B, 1993, 48, 409-417; R. D. Lampeka, N. M. Dudarenko, V. V. Skopenko, Acta Crystallogr., im Druck.
- [14] J. W. Kang, K. Moseley, P. M. Maitlis, J. Am. Chem. Soc. 1969, 91, 5970-5977; B. L. Booth, R. N. Haszeldine, M. Hill, J. Chem. Soc. A 1969, 1299-1303; W. P. Fehlhammer, W. Herrmann, K. Öfele in Handbuch der Präparativen Anorganischen Chemie (Ed.: G. Brauer), F. Enke, Stuttgart, 1981, Bd. 3, S. 1961, 1963.
- ^[15] R. Krämer, K. Polborn, H. Wanjek, I. Zahn, W. Beck, Chem. Ber. 1990, 123, 767 – 778; D. Carmona, A. Mendoza, F. J. Lahoz, L. A. Oro, M. P. Lamata, E. San Jose, J. Organomet. Chem. 1990, 396, C17–C21.
- ^[16] [Cp*RhCl₂]₂ katalysiert Esteraustauschreaktionen an α-Aminosäure-alkylestern in Alkoholen: R. Krämer, Dissertation, Univ. München, 1991.
- [18] [18a] B. T. Golding, G. J. Gainsford, A. J. Herlt, A. M. Sargeson, *Angew. Chem.* 1975, 87, 523-524; Angew. Chem. Int. Ed. Engl. 1975, 14, 495; Tetrahedron 1976, 32, 389-397; Y. N. Belokon, A. S. Melikyan, T. F. Salel'eva, V. I. Bakhmutov, S. V. Vitt, V. M. Belikov, Tetrahedron 1980, 36, 2327-2335. - ^[18b] L. S. He- gedus, E. Lastra, Y. Narukawa, D. C. Snustad, J. Am. Chem. Soc. 1992, 114, 2991-2994.
 [19] O. L. D. L. K. H. S. J. S. H. S. J. S. H. S. H. S. J. S. H. S. H. S. J. S. H. S. H. S. H. S. H. S. J. S. H. S. J. S. H. S. H. S. H. S. H. S. J. S. H. S. J. S. H. S. J. S. H. S. H. S. J. S. H. S. J. S.
- ^[19] C. J. Pouchert, J. P. Chapbell, *The Aldrich Library of NMR Spectra*, Aldrich Chemical Company Inc., Milwaukee, **1974**.
- ^[20] Weitere Einzelheiten zur Kristallstrukturuntersuchung können beim Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlich-technische Information mbH, D-76344 Eggenstein-Leopoldshafen, unter Angabe der Hinterlegungsnummer CSD-57384, der Autorennamen und des Zeitschriftenzitats angefordert werden.

[199/93]

A 2427